Catastrophic Forgetting in Deep Learning

Julio Hurtado CPD7000

Table of Contents

- 1. Machine Learning
 - a. Deep Learning
- 2. Transfer Learning
 - a. Catastrophic Forgetting
- 3. State of the Art
- 4. Our Solution
- 5. Meta Learning
- 6. Future Work

What is Machine Learning?

Artificial Intelligence

Learn from data

Big Data

Find Patterns in data

Unstructured data

Supervised Learning

Deep Learning

Traditional Machine Learning

Deep Learning

Deep Learning

Advantages

- Significantly outperforms other solutions in multiple domains
- Reduces the need for feature engineering
- Is an architecture that can be adapted to new problems relatively easily

Disadvantages

- Is extremely computationally expensive to train
- Required a large amount of data
- Determining the topology/flavor/training method/hyperparameters for deep learning is a black art with no theory to guide you

Transfer Learning

Feature extraction

Fine-tuning

State of the Art

Progressive Neural Networks

State of the Art

How does a CNN works

Our Solution

Our Solution

Our Solution

Mask Learning

$$\Gamma_l(\Theta^l, S^l) = (1 - \beta^l) \frac{1}{2} \left\| \hat{\Theta}^l \right\|_F^2 + \beta^l \sum_{k=1}^{K^l} \left| S_k^l \right|$$

Mask $T_i = ($ (Scalars $T_0 + ... +$ Scalars $T_i) > \tau$)

Meta Learning

- Are the filters learned in previous task useful for new tasks?
 - In a similar or different context
- Learning to learn
 - To learn more generic filters
 - Without affecting the accuracy of the model
- Are filters learned in new tasks useful for previous tasks?
 - \circ $\;$ Assuming that we have the data from the previous tasks

Future Works

- Continue doing experiment
 - How many filter use each task?
 - How many task we can train with the same model?
- Change the way we find the none binary Mask
- Find the way to add a meta learning model to our model
 - How do we know if the model is generalizing well

References

- Yosinski, Jason, et al. "How transferable are features in deep neural networks?." Advances in neural information processing systems. 2014.
- Li, Zhizhong, and Derek Hoiem. "Learning without forgetting." IEEE Transactions on Pattern Analysis and Machine Intelligence (2017).
- Rusu, Andrei A., et al. "Progressive neural networks." arXiv preprint arXiv:1606.04671 (2016).
- Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." Proceedings of the National Academy of Sciences 114.13 (2017): 3521-3526.
- Wang, Yu-Xiong, Deva Ramanan, and Martial Hebert. "Growing a brain: Fine-tuning by increasing model capacity." IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). 2017.
- Mallya, Arun, Dillon Davis, and Svetlana Lazebnik. "Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Información de Contacto

- Email: jahurtado [at] uc.cl
- Twitter: @JuliousHurtado

Catastrophic Forgetting in Deep Learning

Julio Hurtado CPD7000